Advanced Technologies

Low-Level Radioactive Waste Forum Spring 2024 Meeting April 3, 2024

©2024 Nuclear Energy Institute

https://www.nei.org/resources/fact-sheets/nuclear-energy-just-the-facts

Topics

- Advanced reactor technologies

 Light-water SMRs
 Non-water cooled
 Micro-reactors
- Key enabling technologies
 Advanced manufacturing
 Coolant
 Fuel

- New uses and applications
 Remote locations
 Mobile uses
 Heat, Hydrogen, Desalination
- Non-power technologies
 Space
 Medical
 Fusion

Current State of Advanced Nuclear

- Over 60 new technologies being actively developed by private sector
- DOE funding 12 different designs, >\$5B over 7 years
 - 3 Demonstration Plants
 - 9 Technology Development
- U.S. utilities evaluating nuclear in integrated resource plans (IRPs)
- Growing interest in conversion of coal power sites to nuclear
- Continued strong support in Congress

Technology Developers – NEI Members ŊÊI Natura 👌 RADIANT **GENERAL ATOMICS** ENERGY Alpha Tech Research Corp TerraPower OLTEC newc INTERNATIONAL Kairos Power NuCube arc F R G Energy LAST CLEAN TECHNOLOGY **ENERGY** NuGen moltex clean energy Westinghouse BWX Technologies, Inc **NUSCALE** EXOD¥S 🗶 energy 🖁 ENERGY Muons, Inc. KLO Ξ framatome Innovation in Research REPLOY **HITACHI POWER** POWER SYSTEMS Nuclear Energy Inc ©2024 Nuclear Energy Institute 4

Advanced Nuclear Deployment Plans

State support and projects that may be in operation by early 2030s

©2024 Nuclear Energy Institute Updated 12/19/2023

Types of Advanced Reactors

Range of sizes and features to meet diverse market needs

Cost/Value Proposition

 Operational Excellence

Construction Methods

Key Enabling Tech – Adv Manufacturing

- Laser Powder Bed Fusion
- Powder Metallurgy Hot Isostatic Pressing (PM-HIP)
- Electron Beam Welding (EBW)
- Cold Spray
- Directed Energy Deposition (DED)
- And many others...

Courtesy: Kairos

Courtesy: EPRI

Courtesy: Westinghouse

Courtesy: ORNL

©2024 Nuclear Energy Institute 8

- Ceramic UO₂ pellets stacked in rods
- 17x17 PWR Fuel Assembly
- Relative size of BWR and PWR fuel assemblies

 Light-water SMRs ~1/2 height and/or fewer assemblies, otherwise same

Light-water SMR

- 300 MWe
- Leverages NRC approved ESBWR
- 7 days of cooling without power or operator actions
- Novel construction techniques
- Existing fuel design
- OPG signed commercial contract
- OPG, TVA, and Synthos Green Energy form Design Centered Working Group

GEH's BWRX-300

NE

Liquid Sodium Fast Reactor (SFR)

- 345 MWe
 - Molten salt thermal storage for peaking to 500 MWe
- Early in NRC interactions
- Requires HALEU metallic fuel
- Possible higher temperature, non-electricity applications
- Innovative construction methods
- DOE: operational 2027 2030
- Location: Kemmerer, Wyoming retiring coal facility

TerraPower/GEH's Natrium[™]

Uranium Isotopes

Natural Uranium (U)

• 0.7% U-235, 99.3% U-238

Commercial Nuclear Fuel

- Low Enriched Uranium (LEU)
- <5% U-235, >95% U-238
- High-Assay LEU (HALEU)
- <20% U-235, >80% U-238

Nucleus

https://www.nei.org/resources/fact-sheets/nuclear-energy-just-the-facts

High Temperature Gas Cooled SMR

- 320 MWe
 - 4 modules @ 80 MWe each
- Early in NRC interactions
- Requires HALEU for TRISO fuel
- Possible high temperature, nonelectricity applications
- DOE: operational 2027 2030
- Location: Seadrift, Texas Dow site

X-energy's Xe-100

Pebble

Porous Carbon Buffer

Pyrolytic Carbon Silicon Carbide

Particles

Uranium Dioxide or Oxycarbide Kernel

Compacts

Fuel Element

TRISO-coated fuel particles (left) are formed into fuel compacts (center) and inserted into graphite fuel elements (right) for the prismatic reactor

- Provides containment and can withstand temperatures well above accident conditions
- Higher operating temperatures more efficient
- On-line refueling possible
- Passive decay heat removal

Molten Salt Cooled SMR

- 140 MWe (commercial)/35 MWth (test reactor)
- Molten salt cools TRISO fuel pebbles
- Hermes test reactor NRC construction permit issued 2023
- Requires HALEU
- Possible high temperature, nonelectricity applications
- Test Reactor Operation: 2026
- Location: Oak Ridge, TN

Kairos Power's KP-FHR

Integral Molten Salt SMR

- 390 MWe
 - 2 modules @ 195 MWe each
- Molten salt liquid fuel
- Early in NRC interactions
- Canadian Vendor Design Review Phase 2 complete
- <u>Does not</u> require HALEU
- Possible high temperature, nonelectricity applications
- Schedule: TBD

Terrestrial's IMSR®

Versatility – New Market Opportunities

ŊÊI

Micro Reactor (SFR)

- 1.5 MWe "Fission Battery"
- Metal fuel with heat pipes
- NRC license application ~2024
- Requires HALEU recycling used fuel for first core
- 10-year core
- High temperature applications
- Planned Demonstration: ~2030

ŊÊI

Oklo's Aurora

Recycling for Advanced Reactors

- Used fuel from existing fleet can be feedstock for some non-LWRs
 - Compliment HALEU supply chain
 - 8/2020 Survey of Advanced Reactor suppliers indicated majority considering recycled feedstock
- Fast Reactors and Molten Salt Reactors (MSR)
 - Potential economic and nuclear efficiencies
- Proliferation resistant
 - Many approaches do not separate plutonium

Electro Refining

Source: GEH

- Thermoelectric generator
- Watts to kilowatts electric
- Electricity and heat

Other Space Nuclear Power

- Radioisotope Thermoelectric Generator (RTG)
- Nuclear Reactor Power System
- Nuclear Thermal Propulsion

Zeno Power Systems

Enabling Resilient Operations

1000 Marine

NÉL

Use as a prime power source or couple with a battery to form a "self-charging battery"

Undersea Vehicles

Arctic Communities

Lunar Rovers

Nuclear Medicine

- Medical Imaging Tc-99m half-life 6 hrs
- External Beam Radiation Therapy
 - Linear accelerators x-rays
 - Proton therapy accelerator
 - Gamma knife Co-60 half-life 5.3yrs
- Brachytherapy radioactive implants
- Boron Neutron Capture Therapy

SPECT/CT in orthopedics Source: www.siemenshealthineers.com

Gamma Knife

NÉ

National Programs

- International Thermonuclear Experimental Reactor (ITER)
- Joint European Torus (JET)

Private Development

- >15 Companies
- \$2+ Billion invested
- Mostly from wealthy individuals

ŊÊI

Advanced Nuclear Versatility

Watch the video: https://www.youtube.com/watch?v=7zN_YLg-roo

QUESTIONS?

1

IIII IIIII

LTTT:

TITU

III

TTTT ITTT

By Third Way, GENSLER